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Abstract

savesian nonparametric estimators of the survival function, the failure
rate function, and the density function are obtained using jump processes as
prior distributions on the space of increasing failure rate functions. The

jumy processes are more appealing intuitively than previously used Dirichlet
processes, integral gamma process, and processes neutral to the right and have a
meaningful phyvsical interpretation. Examples are given and the estimates are
compared with the maximum likelihood estimates. In addition, the Bavesian

nonparametric estimators are presented for arbitrarily right-censored observations.
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1. INTRODUCTION

The problem of Bavesian nonparametric estimation of a survival or reliabil-
ity function has been considered in recent vears by several authors (for
example, see Ferguson (1973, 1974), Ferguson and Phadia (1979), Lo (1979),
and Susarla and Van REvzin (1976)). These authors have utilized mainly the
Dirichlet processes, intepral gamma processes, or processes neutral to the
right as prior probability distributions over the space of all distribution
functions of interest. The Dirichlet process priors put all of the probability
on discrete distributions while processes neutral to the right and integral
gamma processes are somewhat difficult to use in practice. Alsco, if further
prior information concerning the distribution function F to be estimated is
known, the Dirichlet process priors mav not be entirely appropriate. For
example, {f it is assumed that F has an increasing failure rate (IFR)
function, the Dirichlet process would not be suitable since F 1is absolutely
continuous on at least part of its support. In this paper we propose a prior
process on the faflure rate function for Bayes estimation of the failure rate
and survival functions under the assumption of IFR. The proposed prior is
very practical and has a physical interpretation similar to that of a shock
model with shocks occurring as a Poisson process. No assumptions are made
about F except that it is IFR.

Let r(t denote the true failure rate function of the unknown distribu-
tion function F and let F(t) denote survival probability at t 2 0 . We
assume that F has a density function f(t) = r(OF( . Nonparametric
£ : estimation of the failure rate function has been considered by Watson and
Leadbetter (1964a, 1964b) and by Barlow and van 2Zwet (1971), among others.

In particular, Grenander (1956) and Marshall and Proschan (1965) obtained the
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maximum like.ihood estimator of r(t) wunder increasing assumptions. Their
estimator was a step function and took the value += at the largest value of
the sample. Padgett and Wei (1979) have recently obtained the maximum like-
lihood estimator of monotone failure rate functions for arbitrarily right-
censored survival data.

The prior probability distribution on r(t) which we propose is moti-
vated by the fact that r(t) can be closely approximated and estimated by a
step function. We assume throughout the paper that r(t) is increasing
(meaning nondecreasing) for t > 0 so F is an IFR life distribution.
Suppose the experimenter has prior information that he can quantify as a jump
process for r(t) with constant jumps of size ¢ at times T1 >0 . 3w
1,2, -+, where T  are arrival times for a Poisson process {N(t) :t20}
with intensity rate Vv . This constant jump process thus describes the prior
probability distribution over the parameter space O = {r : r 1is an
increasing failure rate function) . This prior distribution over C also
has the following intuitively appealing physical interpretation: Suppose
shocks occur randomly in time to a system or component causing a certain
amount of damage to it which increases the failure rate of such components by
a certain constant positive amount <« . Assume that the damage is cumulative
and that the shocks vccur according to a Poisson process {(N(t) : t20} with
intensity Vv . Then the failure rate function can be considered, at least
a priori, as a constant jump process. This phvsical interpretation is similar
to those probability models proposed by Gaver (1963), Antelman and Savage (1965), and
Reyaolds and Savage (1971) in which the failure rate function was stochastic.

In Section 2 we will utilize the constant jump process as a prior distri-

bution on increasing failure rate functions to obtain a Bayes nonparametric




estimator of r(t) and of the reliability or survival function F(t) =
exp(-[; r(u)du’ based on a random sampl. of size n from F(t) . This
estimator of r(t) turns out to ‘e a smooth curve rather than a step function.
In Section 3, an example is given using data simulated by Dubey (1967) from a
Weibull distribution with increasing failure rate. Finally, in Section &, it
is shown that the same techniques mav be easily applied to obtain Bayvesian
nonparametric estimators of r(t) and ¥(t) for arbitrarily right-censored

data. This problem was studied by Susarla .und Van Ryzin (1976) for Dirichlet

process priors and by Ferguson and Phadia (1979) for processes neutral to the

right.

2. THE BAYESIAN NONPARAMET1C ESTIMATORS FOR COMPLETE SAMPLES

Let R(t) denote the failure rate function with prior distribution
given by the constant jump process described in Section 1. Then from the jump
size ¢ > 0 and Poisson process {(N(t):t 20!, we have R(t) = ¢N(t) with

the corresponding survival function given by

- 3 t . .
F(t) = exp.‘4) R(u)du = expl=¢

where T‘ s, i =1,2,+++ N(t) , denote the "arrival" times of jumps of size
¢« in (0,t) . Given N(t) = k and t , it is well-known that Tl' ---.Tk
are independent uniformly distributed random variables on (0,t .

Let Xyttt aXp be a given sample of size n from the unknown distribu-
tion function F . 1t is desired to obtain Baves estimators %(t) and ﬁ(t)
of F(t) and r(t) , respectively, with a squared-error loss function of the
form L(?.#) - ﬁ: {F(t)-%(t)ﬁzdv(t) , where w(t) is an arbitrary non-

random weight function.




The likelihood function of the sample is

n n x‘
Iof(x) = 1 R(x) expl-] * R(u)du
i=1 i=1 0

n N(x‘) .
= N {eNx) expl-e ] = (x-TDI} . (2.2)
i=] J-l

Thus, at least theoretically, the posterior probability measure Pn over
the parameter space O = {r : r is an increasing failure rate function) mas

be obtained from

n n
o Lok IR /1 n 1
P_(B) [y f(xi)dP,/xfi f(x)dP] ,
i=] i=1
where B {s a measurable subset of © and P denotes the prior probability
measure over induced by the constant jump process. It is not necessary,

however, to find Pn in order to obtain the desired Baves estimators. It is
much simpler to calculate the posterior mean of F(t) or R(v) directly.

We first obtain the Baves estimate of F(t) from the expression

F(t) = E[F(e)|x,, *** ,x )
1 n

= I~

- [[F(o

n
f(x AP/ T f£(x)dP] . (2.3)
i -

1 0 je1

Assume without any loss of generality that the sample values are increas-

ing. Xp T Xy £ L X Then from equation (2.2), the denominator of (2.3)

.
becomes

n n N(xq)
[ n f(x)dP = [ T {eN(x,expl-¢ (x,~T,))
0 fu1 i=1 . AR

x dp(“(‘l)' cp bl .N(xn) N T e )

, Y sk
1 N(xn)
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n
B e Ao (e™ I Kk, exp(-¢ ] ] (x~T )]},
NGy N PN G =k gt T i 5
(2.4)
where ] = (Tl. ".‘TN\x )) The exponent in (2.4) may be rewritten in the
el
form “
: 1 i i
=€ § } (X =T ) = ~qlk x, +(k,~-k,) - DS gt 8 T SRS
guy gy 3 3 Lok e LM n n-1"%p
kl E? kn
+eln J AT Ay ) 1.
i=1 j-kl+l j-kn-l+1
Now, conditioned on ki-l jumps in the interval (O'xi—l' 5 Tki‘1+]. "°.Tk1

are order statistics from independent uniformly distributed random variables

on (x‘_l.xil g 4w g seeons wnl oy e T are order statistics from

1 Ky
independent uniformly distributed random variables on (0.:1]- Hence, letting

X - 0 and ko = 0 , we have for the itV interval (xi‘ .xi) L B O T

1 i
Ix‘ f xi 59 ki
s expl (n-i+1) « t.d n de,/lx, =%, ) -
_ x, ey - 3 - b i "i-1
i-1 i-1 ok, =k _ *1 (2.5)
e e
- (chp(t(n-l+l)xl) - exp(«(n-1+l)x‘_l)]/lc(n-i+l)(x‘-xi_1)})
By the mean value theorem, there is an x? ‘(xi-l"i] for which
1
expl (n=141) ¢ xii-exp[(n-i+l)f xi_ll 0
- - ) 2
s T R e expl(n=1+1) ¢ x 1 (2.6)

i 1-1

so (2.5) can be simplified to exp! ¢« (n-l#l)x?(ki-k )] . Thus, summing over

i-1""
the appropriate Poisson variables, the expectation in the right-hand side c¢¢




(..%) becomes

n -vx s kn k: u n 0
¢ e f L L i ( I kx) expl ¢ Z [(n-jﬂ)xj
kK =0 k =0 k. =0 je=] j=1
n n-1 1
; ky B Kyhyy B
- Tk ~k, )N I (x,-x, ) ;! B N (2.7
=i ! 3~1 {=] i i-1 Pt { “i=1

Equation (2.6) can be solved for

0

x, = {infexp((n-i+1) ¢ x

g " exp((n=-i+1) ¢ x, )

i-1

= inl (n=i+1) « (xx-x

1-1)})/1 (n-1+1)

which can be substituted into (2.7) to obtain the exact expression for the

denominator.

To calculate the numerator of (2.3) the technique is the same as for the

denominator except that we have an extra term. The numerator is

= n
j ) 1 f(x,)dP
i=1
K
zt
E, s {E.| «k _ cos Nlirdek COEPL=¢ (t-T,)]
N(x ), NOx ) N(0) TTTING )=k N =k g1 3
o n n k’-i
xw K expl-«¢ | ) (x‘-T )11} . (2.8)
i=1 =1 =1 !

Note that the order of summation corresponding to the first expectation in

(2.8) depends on the value of t . If X T ES R 5 Im ], " %)

i

where X " 0 and Rl ™" then the value of N(t) is between N(x‘_l)

and N('i) with probability one, with N(0) = 0 and N(=) = « . Hence,




we can simply relabel the x"s and t as n+1 new points by defining

yJ - yj(t) - £ j=1 e G S I T (2.9

Then similar to the denominator, the right-hand side of (2.8) becomes

a n+l
E, : {E.1. A s 7 L Nk
.\()l). 'N()n#l) I..\(,\l) kl. wiale 3 M\n‘l) kn#l jul '
jri
nel K
* expl-¢ ) f (y,-T )11}
=1 m=1 =
o o n+l E} n+l 3 +1
= o exp(-vy .,) 7 san LR RV r
k™0 k=0 k0 jei J
i
n+l k -k n+l n+l
B Gy, 1 31 eple } ((n-j#l)y? - 1y )k, )]
3=1 3= m=
n+l
At o ! P 2.10
/ J:l(kJ kj-l)' 5 X1 D Xy o i ‘5 ,m+l . 10)

Therefore, the desired Baves estimator F(t) of survival probability

F(t) 1is given by (2.10) divided by (2.7). This estimator is readily comput-

able by electronic computer as the example in Section 3 shows.

[ ST
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Now, for the Bavesian nonparametric estimator of r(t) , the failure
rate function, we simply calculate the required numerator expression for

the posterior mean of R(t) = ¢N(t) , which is

E n n %
[ R(t) N t(x)dP = [ R(t) I R(x,) expl - [ " R(u)duldP
i i 0
i=] j=]
n N(‘l)
= [ eN(t) T [eN(x,) exp(=c ] (x.=T))))dP(N(x,), *** ,N(t),T)
‘ fm] i j=] B 3 1 e
N(x )
n+l, o T o .
= El¢ ( 1 N(x, )IN(t) expl-¢ | ) (x,=T)))] . (2.11)
’-] i=] j-]

This expression is analogous to (2.8). Hence, relabeling the xi's and t

as vy 's as in (2.9), it is easily shown that (2.11) is equal to

3
n+l
e A
B, AP £ b v s Wil - (e { Hk,)
N(yy)s =2 2By ) TIN(y )oky s oo oW (00 )"0 ju1 3
n+] E}
* expl= ¢ ) l (y.~T.)11}
jul,4ft we1 I ®
3 K
o n+l 2 n+] kK
- ’n#l exp(—xyn‘l) Z Z R Z S i "l
k=0 k =0 k=0 j=)
n+l K o-k i-1 n+l
x N (y -yj_l) S exp. « Z ((n-j+l)yO - E ym)
j=1 3 j=1 I ey
mei
n%l 0 n%l
x (k,=k, .) + ¢ (n-442)y, - y )k =k; )]
j j-l J.‘*l j m.J m J j 1
n+l
/] (k -k

J-l .j J-l
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where vo c(y y ) as in (2.6) k! = k for 3 s 4 and
18] " VT 110" 14] il i-1 ey
Yy for - 35 |
J ) .

Therefore, the Baves estimator k(t) of r(t) 1is given by (2.12)
divided by (2.7). This estimator is a smooth curve, rather than a step
function as the estimator of Marshall and Proschan (1965) yields, and is an
increasing function over the range of the data so that we have a '"closure"

property of IFR over this range.

We remark that the constant jump size ¢ may be replaced by a random
jump sfze W , say, with distribution function C . This extension compli-
cates the expressions and makes them intractable. The constant jump prior

process seems reasonable and sufficient for Bavesian analvsis as was dis-

cussed in Section 1.

3. AN EXAMPLE

As an example, the formulas for the Bayvesian nonparametric estimators
derived in Section 2 were programmed for computation on an electronic com-
puter. A random sample of size n = 5 was selected from the 100 observa-
tions of Dubey (1967) generated from a Weibull distribution with scale
parameter one and shape parameter 1.2, so0 that the failure rate function is
increasing. The sample selected given in order is 0.135873, 0.666654,
0.948871, 1.341265, 1.521437, Figures 1 and 2 show the resulting estimates
of r(t) and F(t) , respectivelv. Several values of the prior process
parameters Vv and ¢ were used to {llustrate the effects of the choices.
Also, computed and plotted in the figures were the maximum likelihood esti-

mates (Marshall and Proschan (1,65)) and the true r(t) and F(t) for

comparison. The mle of r(t) {is + = at 1.521437 and beyond.
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The computations in Figures 1 and 2 were performed with 13 terms in the
outside infinite summations in expressions (2.7), (2.10), and (2.12). The
results were t ¢ same to at least two decimal places when using ten or

i 0

nineteen terms. Also, an approximation to the x) in (2.6) jJ in
; : 0 X+Xi-1

the numerator formulas) given by the midpoint R, W =Seipiles vielded the

same results to at least two decimal places.

THE CASE OF ARBITRARILY RICGHT-CENSORED DATA

In many situations in life testing and survival analvsis the items may
be entered into and removed from the study at arbitrary times. Susarla and
Van Ryzin (1976) and Ferguson and Fhadia (1979) have obtained Bavesian non-
parametric estimators of survival probability utilizing the Dirichlet

processes and processes neutral te the right as priors, respectively.

s
D denote a random sample of true survival times of n
n

ftems whose lifetime distribution is F . Let U '.Vn be a set of

3
constants or independent random variables which are also independent of

(3

x*, «+« ,X* . Define
1 n

T T S 2
Ay

6
0 1% )x

The pairs " *+ ,n, are the observations which are available

to the experimenter, in which xx is an observed lifetime {f 61 = ] and a

censored lifetime if 6‘ = 0 ., That is, it is known which observations

represent "failures" and which ones represent "losses'.




The likelihood function can be written as (Lagakos (1979))

n 6‘ A 1-4&
e I [f(xl)i [F(x‘)'
i=]

i

n él e
- § iR(x‘)T F(x‘) .
i=]

where R(t) is the failure rate function as before. Hence, for the right-
censored sample (Xl.“) , 1 = 1, n, the Bavesian nonparametric esti-

mator of F(t) is obtained as in Section 2 for complete samples. The

estimator is given by

Fit) o E[F(t)|(x,,6 oY aikn
it ELF(t “li 1).‘ 1, n

n & X
s = 4 . pa \
] Flt) R(xi) exp."% R(u)du 1dP
- NPT ' AN & (4.1)
) n é‘ X
J I !R(x‘) cxpf-&} R(u)duldP

where the notation is the same as before, with x, S-S x .

1 n
The cvenominator of (4.1) 13z given Yy
. hn k: n § 3 n k -k
- v i B i i-1
exp(=-vx ) ) ), SR ('ki) (x‘-x‘_l)
" kw0 k= K =0 =] i=1
fn n-1 1
n 0 n n
~ ‘ 7 -4+1) - 5. - ] n . ¥ 4.
exp ’:’((n §+1 11 ‘:,x‘)(h’ kj_l),/i-l(k‘ kl-l) (4.2)

For the numerator of (4.1), we relabel the observations in a manner

similar to that in Section 2. When x St ER £ = 3, "s ae]l 5 With

i-1 5"

X * 0 and X4 - w . Jet




13
" S i-1 8.0 < i-1
j gt 2
y = y (t) = - = i and NEE Y ) S - i
¥y ¥y 3 j ; b
3 z + ¢ 5 2
x)_l R -+ §-1 3 1+1
Then the numerator 1is written analogous to (2.10) as
o knﬂ k: n+l b o n+l
Y g " j o4l ,
exp(-vy ) L Foavs X Bilak)*v / N (k~k, . )!
n+l k =0 k. =0 j.l ) J.l j j-l
n+l=0 n 1
n+l kK, -k n+l n+l
* T (VJ'YJ_I) I exple ) ((n-j*l)v?- )} Yo (kj-kj_l) R
j-l J-l J m'j
X <t X AL R L RglE T o (4.3)

Therefore, for right-censored samples the Baves nonparametric estimator

é(t) of F(r) s given by (&.3) divided by (4.2). The numerator foi the

Baves estimate of r(t) can be found in a similar manner and is omitted here.
Remark 1. We remark that the Bavesian nonparametric estimator for

F(t) given here is a smooth curve (and assumes F is an IFR distribution).

Susarla and Van Ryzin's (1976) Bayesian nonparametric estimator for this case

using the Dirichlet priors is discontinuous at the uncensored data points

while the well-known Kaplan and Meier's (1958) estimator is a step function
with jumps at the uncensored observations.

Remark 2. 1t should also be noted that we can obtain a Bayesian nonparametric
estimator of the density function f(t) in this framework. For the censored

sample (X ,%#.), 1 = 1,...,n, we calculate f (t) = E[f(t) | (x,,8§ ), 4 = 1,...,n]
i n - ek

i
in a manner similar to that for (4.1). Since f(t) = R(t) F(t), the required

numerator for fn(t) is the same as (4.3) with the stated relabeling of x"s and




t to y"n and fi's to wj'a except that 11 = 1 for § = 1. Again, fn(t) is a
J

smoot:, density estimator and, of course, for 6‘ = 1 for all i, we have the

case of no censoring as considered in Section 2.
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